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Vertical, horizontal and angular oscillations of a rigid stamp lying on an el- 
astic, isotropic half-plane and acted by a harnonically varying load, are con- 
sidered. The problems are formulated in such a manner, that one of the stress 

components is zero over the whole boundary of the half-plane. The problems 
for low, medium and high frequencies are reduced to integral equations, and 

three methods of solving these equations are given. Numerical solution of the 
problem of vertical oscillations shows that the approximate solutions obtained 
for the low, medium and high frequencies approach each other with an ac - 

curacy sufficient for practical applications. The problems for low frequencies 

were studied in [ l-61, but half of the residue at the Rayleigh pole was not 
taken into account by the authors of [ 1,2,5,6 1. 

1, Statement of the problems. Using the principle of limiting absorption 
i?7 1 we reduce the problems of vertical (problem 1)) horizontal (problem 2 ) and an - 
gular (problem 3 ) oscillations of a stamp to that of solving the following integral 

equations: 

(where for the problem 3 6, (5) = f&r, 8, = 0,, + if&, denotes the amplitude of 

the angle of rotation of the stamp), Here o (5, t) = qe (x)eiaf denotes anunknown 
function of distribution of the contact stresses (normal for the problems 1 and 3, tan - 

gential for problem 2) under the stamp, 6, (x)eiWt is the displacement of the stamp 
under applied load and 6, (z) = 6, (z)e--iv where cp is the phase difference 

between the oscillations of the stamp and the applied load generating these oscillations, 

60 (5) is the complex amplitude modulus of the oscillations of the stamp, p is 
density, G is the shear modulus of the elastic half-plane and 2~ is the length 
of the line of contact. The x -axis is directed along the line of contact and the 

Y -axis is perpendicular to the 2 -axis (see Fig. 1 of [5] > . 
In what follows we shall adopt, for the sake of brevity, the following convention. 

When speaking of the stresses, displacements and phase shift angles I we shall mean 
their amplitudes. Their true values can be obtained by multiplying by eiot. 

The kernel kc (x) of (1.1) has the form 
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k, (LX) = 1 Ka(u)e-*l+du 
--m 

(1.2) 

K,(u) = 
~/IL” - (1 - ie) l2 

4ua VU” - (1 - ie) b2 vu2 -. (1 - ie) - [2u2 - (1 - ie)j2 
(1.3) 

ba = l/z (1 - 24 / (1 - Y) 

where 1 = b for the problems 1 and 3 and 1 = 1 for the problem 2, E is 

the proportionality coefficient characterizing the internal friction and v is the 

Poisson’s ratio. The function Kc (~1 is even, has two poles and two branch points 
on the real axis symmetrically distributed about the coordinate origin. 

2. Low frequency method. Tofindtheuniformboundofthefunction 6, (2) 
as e-to, we use the results of [8 ] to deform the contour of integration in (1.2 ) 

in such a manner that the poles and branch points of the function KS(U) moving 

towards the real axis with e --t 0 do not intersect this contour. As the result, the 

equations (1.1) and (1.2) become 

1 

s 4 (8 k 1% (E - z)]dE = 2xA6(4 (jzl<i, A = $) 
(2.1) 

-1 

k (5) = S K (u) e+IUdu 
r 

(2.2) 

q (E) = lim qL (f), k (3) = lim k, (z), 6 (z) = lim dc (z) 
K(u)=limK,(u), e+O 

The contour r in (2.2 ) coincides with the real axis, departing from it only to 

encircle the positive s@@arities from above, and the negative singularities from be - 

low. Let us write the integral appearing in (2.2 > , in the form 

K (u) e-*lxlu& = 

where Ao and co are constants defined in [53 by formula (1.3 ) . Taking due ac - 

count of the fact that 

K (u) - A] e-Wu& = \ [K (u) - A] e-il*lu& 
ua - co2 

-L 
u2 - C”2 

and computing the second integral in (2.3 ) by the method of residues, we obtain the 

following expression for the kernel (2.2 ): 

k (z) = 2 i [K (u) - Al cos (xu) &J - -E.!$ e-WC, 
(2.4) 

u2 _co2 

0 
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Here the last term in the right hand side represents half of the residue at the 
Rayleigh pole. 

Writing (2.4 ) in the form of (1.3 ) of 15 1 and applying the methods given in the 
latter paper, we obtain the asymptotic formulas (1.15 ) of [5] in which 

Al---D- B+~E-Ei~~)x"+j-~c+~F+ 
t (2.5) 

_+$_& 5EZ 
-+$++, ( 
8D 

B1= 2B f 3E- 

2Eln~jxa+!4C_i-~F--4Fin~+ 

4BE ‘4.P 2EZ 
30 f. 

+I1 $)x4 

C1 = 

( 
4C+~F--4Fln~----~-~.~~l~~$)~~ 

AZ= -iWx2 - 
i 
;jT + %)x0, BB=2Mx2+4 N+ 

( 
E %4 3o 

j 

with the expressions for PI, Pz, a,, a, and as remaining unchanged. Here for the 

problems 1 and 3 we have 

A = -0.08081, D = 0.6999, L = 1.09954 (2.6) 
B = -0.2442, E = -0.2575, M = -0.4045 
C = 0.03228, F = 0.02~90, N = 0.03435 

and for the problem 2 

A = 0.2819, D = 0.6999, L = 1.09956 (2.7) 

B = -0.1490, E = -0.1325, M = -0.2081 

C = 0.01416, F = 0.009403, N = 0.01477 

3. Medium frequency method. Let us write the equations (1.1) and 

(1.2) in the form 

1 

5 qE(~)ktIx(~--)ld~=nA6,(r) (/.I<% A=+) (3.1) 

-1 

k, (4 = 5 (K-1, (u} + K,, (u)] cos (zu) du (3.2) 

R,, (u) =I 4u2 (u" - h2p (u2 - h2b2) /SE (u) 
R@ (u) = 4 (u." - h2b2)"Z(d - h2 / 2)2 / se (u) (problems 1 and 3 1 

K,, (U) = 4 (a" - ~2~2)1'2(~2 - h2) Is, (u) 

Kze (u) = 4 (U" -- h2)"s(~2 - h2 / 2)' /SE (U) [problem 2) 

se (u) = 16 (1 - b2)ua + 8h2 (3b2 - 3)u4 + 8h4ua - Aa, ha = 

1 - ie 
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Applying to (3.1) the scheme used to obtain (1.1) in [9], we obtain the following 
functional equation : 

a>,+ (a) [KIL (a) + If,, (a)] = ?;A$; + E-(a), a0 = 4 (1 - P) (3. 3, 

where the quantities 0,’ (a) and E- (a) have the same meaning as @.a+ (a), 
E- (a) in(2.9) of C91. 

Let us consider the system of functional equations 

@& (a) K,,(a) = aoAn! i”l 
2 1/2Yan+l 

+$EF(a)- (3.4) 

1+ 1 2 
Qn, p-~ (a) K2, (a) + T E&I (4 

(I$ (a) K,, (a) = aoAn! “‘+l + $ E:-(a) - 
2 JkZiaW1 

The system (3.4) which is equivalent to (3.3 ) , can be solved using a method of con - 
secutive approximations, For the zero approximation we have 

@k(a) Kj, (a) = ‘OAn! in+1 f + &- (a), 
2 1/2naw1 

j = 1, 2 

K 

1c u 
( ) = p- B,2 (u2 - z”,, (u2 - z”,,) 

(u2 - z;;) (9 - z;, (LA2 - z;“,, ’ 
z2, = iy 

L (u) = 
1/h- D,s (u” - 472 

-_ 
12 ,a ,2 ’ 

(u2 - zsc) (US - ZIE) (u” - z2E) 
Ec- ll”z 

(BE = h, 21, = DC = ?A for the problems 1 and 3, B, = hb, zlc = D, = h 
for the problem 2, and %r’ , %E’, %E’ are the roots of the function S, (u) lying 

in the upper half - plane ) . 
Having performed for (3.4) the manipulations analogous to those carried out for 

(2.9) in [9] and taking into account the exact factorization of K1, (u) and KB1 (u) 

we obtain the solution in the form 

erf 1/- iB,y + (a-~y)~‘h~~~~ + rlEeiZl~Y erf f/i (zlr - BL) y - 

ir2rY F2& erf v/i (zpr - B,) y 
_Y 

&, (y) = - iAil”erf V - iD,y + F3,eiDcy + 

FgceiEay erf I/i (E, - DE) y 
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3141~ &_ D ) (A,. (1 - $) + 

c 

As [Y (1 - +) + 
z;, (3E, - 20,) - E; 

2iEEa (E, - D,) II 
A 

iB,z~, z& iDsEt 
1E = - ,a s2 ,2 ’ Ax = - ,2 >2 ,2 

%32E Z3r 21s 22s 23e 

AQE = i (ZE, - z;, - &), & = - (E, - &) (E, - z;c> 

where erj x is the probability integral. 

The general solution of 
00 

s r~jr (E) kj, IX (E - x)1 dE = nA6, (I), 1% I < 00 
-00 

kjt (x) = 1 K,i, (u,) cos (ZU) du, i = 192 
0 

can be obtained using the formulas (2.31- (2.34 1 of [S 1, and has the form 

I+ (x) = xAao L 
Using the results of [9--121, we shall construct the approximate solutions of (1.1) 

in the form 

(3.6) 
i = ** 2 

noting that with the factorization taken into account, 

Kj, (a) = K++ (a) Kjc’(a) when e---f 0, h -t - 1 

Construction of the higher approximations of (3.4) encounters difficulties in con- 
nection with computing integrals of the form 

We shall show however, that (&,j+ can be determined with accuracy sufficient 

for practical purposes. 
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Having constructed in the above manner the approximate solutions QO (x) and 
Qi (x) of (1.1) for medium X in the form (3.6) for the case 6 (5) = 6 (plane 

stamp) and 6 (z) = 8s (inclined stamp) respectively, we can find the force and 
moment for any nonplanar stamp using the formulas of Cl3 ] 

P = f 6 (2) qo(x) dz = PI + iP,, M = i 6(z) ql(s)dx = Ml+iMs (3.7 1 
-1 -1 

4. High frequency method. Let us write the kernel (2.2 ) of the integral 
equation (2.1) in a different form 

k(z) = s I( (z++Wdu 
r 

(4.1) 

It can be shown that for x > 1 the kernel k (z) can be written in the form 

k (z) z - 2ni [b16’ (x) /x + bae-~~IXI] (4.2) 
bl = i lim K(u), 

114 
bz = lim (u - co) K (u) 

U-CO 

Here 6” (5) is the delta iimction, co is the positive pole of the functionK(u) 
lying on the real axis, b, = b for the problems 1 and 3 and bl = 1 for the prob- 
lem 2. Substituting (4.2 ) into (2.1) , we obtain 

Solving (4.3 ) by symbolic method proposed in [14], we obtain the following dif- 
ferential equation with constant coefficients : 

cl” (4 - Al% (4 = b, 16” (3) + cox26 (x)1, hl = x [co (2ib, / 

b, - co)]“’ 
(4.4) 

Approximating the function 6 (z) by a polynomial yields a solution of (4.4) in 
the form 

Q (X) = q0* (x) + ql* (x), q. *(x) = clehlX + cZe-hlx (4.5) 

where ql* (x) is a particular solution of the inhomogeneous equation (4. 4). The 
arbitrary constants in the solution (4.5 ) can be found by substituting this solution into 

(4.3) and equaiing the coefficients of like powers of eklr and e-htz. 

5. Numerical study of problem 1. Let 6 (2) = 6 = Con& (6 = 

6, + is,). Then the formula (3.6 ) and the first formula of (3.7 1 yield 

q. (x) = b. IiQ (z)Q (--ST) ; S (~$3 (-~$1 (5.1) 

Q (2) = [4 + 1, (1 + x)1 erf I/ix (1 + 4 + 4 [4 + l4 (1 + x)1 >: 
[x (1 + x)]-“‘e-iu(l+r) + Z5e-iwb(1+x)erf v/ix) (1 + x) 

S(z) = [Z3 + d2(1 + x)][x (1 + x)]-“te-ixb(ltr) + d3 erfl/ixb(l + x)+ 

[d, + db (1 + x)] e-iuhl(l+x) erf I/ix (b - h,) (1 + z) 
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where 

P = PI + iP, = -A6 (1 - b2)(J, + J2) (5.2) 

J1 = (1 - qJ2(1 + in,)2e-2xi - im,% 11 + i-b-l + 
m, (x - in,)le- 2xbi + 4/3ic,2m,2x3 + 4c,mg4x2 $ (4m,c, [2- 
co + i(wb - mgz,)l + 2ico2 (1 - im,b-1)2}x + 

m2 (1 - co2)(mz - 2i) + co (2 - co) + 2m, (ms, + in, + 

m& 
J2 = (b - c0)2s12e-2xbi + 2i (h, - b)-1{41~2~2x3 + 4m4 (m,s, + 

m&&,)x2 + 2 [szs3 4 6x4 (2m,h&,-’ + m4h3)lx + 2rnss + 
s&&I-1 + ma (2m,h, + im4s4)}e-iX’hl + 2ico2hab-lx - 
ic, [is&4 - 4bc, (m3 - &hh,-l - 6m,m4 + 4ima2h,-l)lbs2 

b, = -0.7143x, 1, = 0.7976-0.2133i, I, = -0.5527ix 

13 = 0.5642, la = 0.3118ix, I, = 0.03252 + O.l576i, dI = 
0.7071 (1 - i) 

dz = (-0.1282 + 0.3874i)x, d, = -0.5714 (1 + i), da = 
0.5243 + 0.22231’ 

d, = (0.1350 + 0.2685i)x, b = 0.5345, co = z3’ = 1.0783 

hl = 0.7071 

21’ = 0.5211+ O.O5321i, z2’ = -0.5211+ O.O532li, mz = ib-?zl’zz’ 

m, = -ib-l (q + b)(z2’ + b), m3 = -i (zl’ + z2’ + h,-l), 

m4 = -(G + W(G + k) 

hz = -O.l315i, h, = -15.115, h4 = (2 - im3hI-l - 2m4)2 

n, = m, (1 - b)-l + m2, n2 = 4.4466, n3 = -2.6352 

n4 = co (i + rn&+) + m2 (1 - l/$,), ns = -1.9849, n6 = 

0.002842 

n7 = -4.1474, n, = 2.2104, ny = 5.8752, s2 = 0.1378 

s1 = b-’ [1. - im, (h, - b)-l - m4 (h, - b)-21, sg = ms2 $- 

.2m4, s4 = 96.4547, sg = -0.009224 

Here the value Y = 0.3 was used in the computation. 
Using the formulas (4.4), (4.5 ) and (3.7), we obtain the following expression 

for the case of 6 (IC) = 6 = con&. : 

q. (x) = H [R -l ch (I& + TI, P = 2H [VW -IshA + Tl (5.3) 

HE- 
4c,x2b.LA8 

b (26, + icob) ’ 
R = (ic,,x + h,) ehl f 

(icox - h,) e-xl, T = & 
L 
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where hi can be found from the second formula of (4.4) and bz = 0.1661. 
The table below gives the results of computing the quantities PI* = PI / A, 

p2* = Pz / A by means of the asymptotic formulas (2.5 ) and (5.2) and the second 

formula of (5.3), for the low, medium and high values of x , with (PI* = -cd, 

- f%, Pz* = ps, - cd,). 

I Eq. (2.5) ti. (5.2) I Eq. (5.3) 

n 
a P a P a P 

0.962 1.65 0.436 0.0194 0.812 
1.44 1.98 1.01 0.120 1.45 
1.74 2.37 1.78 0.324 1.99 
1.77 2.72 2.80 0.636 2.49 
1.48 2.91 4.05 1.06 2.99 
1.17 2.82 5.43 1.56 3.54 
0.972 2.40 6.79 2.12 4.18 
0.864 1.66 7.95 2.67 4.92 
0.800 0.707 8.67 3.17 5.72 

-I- 

The figure depicts the dependence of 6,* and cp on the dimensionless fre- 

guency x for various values of the dimensionless mass M* obtained from the 
formulas (2.4) of [5]. It is clear that the modulus of the complex amplitude i$,* 
decreases and the phase shift increases with increasing x and M*, and this fully 
agrees with the physical aspects of the problem. 

0.62 

s,* 

/ 2 A? 

Fig. 1 

Thus the computations have shown that the approximate solutions converge, in the 
range 0.5 < x < 1 for the low and medium frequencies and in the range 1.5 < 

x < 2.25 for the medium and high frequencies. This makes feasible the study of 
all basic characteristics of the problem for any value of the parameter x . 

The author thanks V. A. Babeshko for useful advice. 
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